Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504502

RESUMO

Treatment of tuberculosis (TB) is faced with several challenges including the long treatment duration, drug toxicity and tissue pathology. Host-directed therapy provides promising avenues to find compounds for adjunctively assisting antimycobacterials in the TB treatment regimen, by promoting pathogen eradication or limiting tissue destruction. Eicosanoids are a class of lipid molecules that are potent mediators of inflammation and have been implicated in aspects of the host response against TB. Here, we have explored the blood transcriptome of pulmonary TB patients to understand the activity of leukotriene B4, a pro-inflammatory eicosanoid. Our study shows a significant upregulation in the leukotriene B4 signalling pathway in active TB patients, which is reversed with TB treatment. We have further utilized our in-house network analysis algorithm, ResponseNet, to identify potential downstream signal effectors of leukotriene B4 in TB patients including STAT1/2 and NADPH oxidase at a systemic as well as local level, followed by experimental validation of the same. Finally, we show the potential of inhibiting leukotriene B4 signalling as a mode of adjunctive host-directed therapy against TB. This study provides a new mode of TB treatment along with mechanistic insights which can be further explored in pre-clinical trials.

3.
PLoS Pathog ; 19(10): e1011731, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871034

RESUMO

Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.


Assuntos
Histona-Lisina N-Metiltransferase , Mycobacterium tuberculosis , Sirtuínas , Animais , Camundongos , Colesterol/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
4.
Genes Immun ; 24(4): 183-193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37438430

RESUMO

Host immune response to COVID-19 plays a significant role in regulating disease severity. Although big data analysis has provided significant insights into the host biology of COVID-19 across the world, very few such studies have been performed in the Indian population. This study utilizes a transcriptome-integrated network analysis approach to compare the immune responses between asymptomatic or mild and moderate-severe COVID-19 patients in an Indian cohort. An immune suppression phenotype is observed in the early stages of moderate-severe COVID-19 manifestation. A number of pathways are identified that play crucial roles in the host control of the disease such as the type I interferon response and classical complement pathway which show different activity levels across the severity spectrum. This study also identifies two transcription factors, IRF7 and ESR1, to be important in regulating the severity of COVID-19. Overall this study provides a deep understanding of the peripheral immune landscape in the COVID-19 severity spectrum in the Indian genetic background and opens up future research avenues to compare immune responses across global populations.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , COVID-19/genética , Perfilação da Expressão Gênica , Fenótipo , Fatores de Transcrição
5.
J Infect Dis ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158474

RESUMO

During infection, Mycobacterium tuberculosis (Mtb) rewires distinct host signaling pathways that results in pathogen-favorable outcomes. Oxidative stress build-up is a key cellular manifestation that occurs due to the cumulative effect of elevated reactive oxygen species generation (ROS) and the inept ability of the cell to mitigate ROS levels. Here, we report the Mtb-induced expression of the neuronal ligand, SLIT2, to be instrumental in ROS accumulation during infection. Loss of function analysis revealed the heightened expression of SLIT2 to be dependent on the Mtb-mediated phosphorylation of the P38/JNK pathways. Activation of these kinases resulted in the loss of the repressive H3K27me3 signature on the Slit2 promoter. Furthermore, SLIT2 promoted the expression of Vanin1 (VNN1), that contributed to copious levels of ROS within the host. Thus, we dissect the pathway leading to the robust expression of SLIT2 during Mtb infection while outlining the potential consequences of SLIT2 upregulation in infected macrophages.

6.
PLoS Pathog ; 18(6): e1010095, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658060

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Lipídeos , Camundongos , Mycobacterium tuberculosis/genética , Proteína-Arginina N-Metiltransferases , Tuberculose/genética , Tuberculose/terapia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
FEBS J ; 289(6): 1536-1551, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670010

RESUMO

Active tuberculosis patients are at high risk of coinfection with opportunistic fungal pathogen Candida albicans. However, the molecular mechanisms that orchestrate pathogenesis of Mycobacterium tuberculosis (Mtb)-C. albicans coinfection remain elusive. In the current study, we utilize a mouse model to demonstrate that Mtb promotes a macrophage environment that is conducive for C. albicans survival. Mtb-dependent protein kinase Cζ-WNT signalling axis induces expression of an E3 ubiquitin ligase, constitutive photomorphogenesis protein 1 (COP1). A secondary infection of C. albicans in such Mtb-infected macrophages causes COP1 to mediate the proteasomal degradation of interferon regulatory factor 9 (IRF9), a cardinal factor that we identified to arbitrate an inflammatory programmed cell death, pyroptosis. In vivo experiments mimicking a pre-existing Mtb infection demonstrate that inhibition of pyroptosis in mice results in increased C. albicans burden and aberrant lung tissue architecture, leading to increased host mortality. Together, our study reveals the crucial role of pyroptosis regulation for manifesting a successful C. albicans-Mtb coinfection.


Assuntos
Coinfecção , Mycobacterium tuberculosis , Animais , Candida albicans/genética , Humanos , Macrófagos/metabolismo , Camundongos , Piroptose
8.
Autophagy ; 18(2): 391-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34074211

RESUMO

Mycobacterium tuberculosis (Mtb)-driven lipid accumulation is intricately associated with the progression of tuberculosis (TB) disease. Although several studies elucidating the mechanisms for lipid droplet (LD) biosynthesis exist, we provide evidence for the significance of their regulated turnover via macroautophagy/autophagy during Mtb infection. We demonstrate that Mtb utilizes EGFR (epidermal growth factor receptor) signaling to induce the expression of the histone acetylation reader, BRD4 (bromodomain containing 4). The EGFR-BRD4 axis suppresses lipid-specific autophagy, and hence favors cellular lipid accumulation. Specifically, we found that pharmacological inhibition or knockdown of Egfr or Brd4 enhances autophagic flux and concomitantly decreases cellular LDs that is otherwise maintained at a significant level in chloroquine-treated or Atg5 knocked down autophagy-compromised host cells. In line with the enhanced lipophagy, we found that loss of EGFR or BRD4 function restricts mycobacterial burden that is rescued by external replenishment with oleic acid. We also report that the EGFR-BRD4 axis exerts additional effects by modulating pro-angiogenic gene expression and consequently aberrant angiogenesis during mycobacterial infection. This is important in the context of systemic Mtb dissemination as well as for the efficient delivery of anti-mycobacterial therapeutics to the Mtb-rich core of TB granuloma. Finally, utilizing an in vivo mouse model of TB, we show that pharmacological inhibition of EGFR and BRD4 compromises LD buildup via enhanced lipophagy and normalizes angiogenesis, thereby restricting Mtb burden and rescuing mice from severe TB-like pathology. These findings shed light on the novel roles of BRD4 during Mtb infection, and its possible implication in potentiating anti-TB responses.Abbreviations: ATG5: autophagy related 5; BRDs: bromodomain containing; COL18A1: collagen type XVIII alpha 1 chain; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; KDR: kinase insert domain receptor; KLF5: Kruppel like factor 5; LDs: lipid droplets; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; Mtb: Mycobacterium tuberculosis; PECAM1: platelet and endothelial cell adhesion molecule 1; SQSTM1/p62: sequestosome 1; TB: tuberculosis; THBS1: thrombospondin 1; VEGF: vascular endothelial growth factor.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Autofagia/fisiologia , Epigênese Genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Lipídeos/farmacologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Tuberculose/microbiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Cell Rep ; 36(2): 109390, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260911

RESUMO

Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , MicroRNAs/metabolismo , Recombinação V(D)J/genética , Regiões 3' não Traduzidas/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proteínas de Homeodomínio/metabolismo , Humanos , Luciferases/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética
10.
J Immunol ; 206(12): 2888-2899, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031150

RESUMO

Septic arthritis is a chronic inflammatory disorder caused by Staphylococcus aureus invasion of host synovium, which often progresses to impairment of joint functions. Although it is known that disease progression is intricately dependent on dysregulated inflammation of the knee joint, identification of molecular events mediating such imbalance during S. aureus-induced septic arthritis still requires detailed investigation. In this article, we report that Aurora kinase A (AURKA) responsive WNT signaling activates S. aureus infection-triggered septic arthritis, which results in inflammation of the synovium. In this context, treatment with adapalene, a synthetic retinoid derivative, in a mouse model for septic arthritis shows significant reduction of proinflammatory mediators with a simultaneous decrease in bacterial burden and prevents cartilage loss. Mechanistically, adapalene treatment inhibits WNT signaling with concomitant activation of HIPPO signaling, generating alternatively activated macrophages. Collectively, we establish adapalene as a promising strategy to suppress S. aureus-induced irreversible joint damage.


Assuntos
Adapaleno/farmacologia , Artrite Infecciosa/tratamento farmacológico , Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Animais , Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Aurora Quinase A/imunologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/imunologia , Serina-Treonina Quinase 3/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/imunologia , Via de Sinalização Wnt/efeitos dos fármacos
11.
EBioMedicine ; 67: 103352, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906069

RESUMO

BACKGROUND: Precise differential diagnosis between acute viral and bacterial infections is important to enable appropriate therapy, avoid unnecessary antibiotic prescriptions and optimize the use of hospital resources. A systems view of host response to infections provides opportunities for discovering sensitive and robust molecular diagnostics. METHODS: We combine blood transcriptomes from six independent datasets (n = 756) with a knowledge-based human protein-protein interaction network, identifies subnetworks capturing host response to each infection class, and derives common response cores separately for viral and bacterial infections. We subject the subnetworks to a series of computational filters to identify a parsimonious gene panel and a standalone diagnostic score that can be applied to individual samples. We rigorously validate the panel and the diagnostic score in a wide range of publicly available datasets and in a newly developed Bangalore-Viral Bacterial (BL-VB) cohort. FINDING: We discover a 10-gene blood-based biomarker panel (Panel-VB) that demonstrates high predictive performance to distinguish viral from bacterial infections, with a weighted mean AUROC of 0.97 (95% CI: 0.96-0.99) in eleven independent datasets (n = 898). We devise a new stand-alone patient-wise score (VB10) based on the panel, which shows high diagnostic accuracy with a weighted mean AUROC of 0.94 (95% CI 0.91-0.98) in 2996 patient samples from 56 public datasets from 19 different countries. Further, we evaluate VB10 in a newly generated South Indian (BL-VB, n = 56) cohort and find 97% accuracy in the confirmed cases of viral and bacterial infections. We find that VB10 is (a) capable of accurately identifying the infection class in culture-negative indeterminate cases, (b) reflects recovery status, and (c) is applicable across different age groups, covering a wide spectrum of acute bacterial and viral infections, including uncharacterized pathogens. We tested our VB10 score on publicly available COVID-19 data and find that our score detected viral infection in patient samples. INTERPRETATION: Our results point to the promise of VB10 as a diagnostic test for precise diagnosis of acute infections and monitoring recovery status. We expect that it will provide clinical decision support for antibiotic prescriptions and thereby aid in antibiotic stewardship efforts. FUNDING: Grand Challenges India, Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, Govt. of India.


Assuntos
Infecções Bacterianas/diagnóstico , Biomarcadores/sangue , Biologia Computacional/métodos , Viroses/diagnóstico , Adulto , Infecções Bacterianas/sangue , Infecções Bacterianas/genética , Bases de Dados Factuais , Sistemas de Apoio a Decisões Clínicas , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Viroses/sangue , Viroses/genética
12.
Cell Chem Biol ; 28(8): 1169-1179.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33571455

RESUMO

In humans, lysophosphatidylserines (lyso-PSs) are potent lipid regulators of important immunological processes. Given their structural diversity and commercial paucity, here we report the synthesis of methyl esters of lyso-PS (Me-lyso-PSs) containing medium- to very-long-chain (VLC) lipid tails. We show that Me-lyso-PSs are excellent substrates for the lyso-PS lipase ABHD12, and that these synthetic lipids are acted upon by cellular carboxylesterases to produce lyso-PSs. Next, in macrophages we demonstrate that VLC lyso-PSs orchestrate pro-inflammatory responses and in turn neuroinflammation via a Toll-like receptor 2 (TLR2)-dependent pathway. We also show that long-chain (LC) lyso-PSs robustly induce intracellular cyclic AMP production, cytosolic calcium influx, and phosphorylation of the nodal extracellular signal-regulated kinase to regulate macrophage activation via a TLR2-independent pathway. Finally, we report that LC lyso-PSs potently elicit histamine release during the mast cell degranulation process, and that ABHD12 is the major lyso-PS lipase in these immune cells.


Assuntos
Ácidos Graxos/imunologia , Lisofosfolipídeos/imunologia , Animais , Células Cultivadas , Ácidos Graxos/química , Feminino , Histamina/imunologia , Humanos , Lipídeos/química , Lipídeos/imunologia , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Macrófagos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-33042857

RESUMO

Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of Mycobacterium tuberculosis (Mtb) in the pathogen's interaction with the host. Among its uncanny ways of dealing with the host with umpteen strategies for survival and persistence in humans, CtpF is identified as a new player. The levels of ctpF are upregulated in macrophage stresses like hypoxia, high nitric oxide levels and acidic pH. Using confocal microscopy and fluorimetry, we show that CtpF effluxes calcium in macrophages in early stages of Mtb infection. Downregulation of ctpF expression by conditional knockdown resulted in perturbation of host calcium levels and consequent decreased activation of mTOR. We present a mechanism how calcium efflux by the pathogen inhibits mTOR-dependent autophagy and enhances bacterial survival. Our work highlights how Mtb engages its metal efflux pumps to exploit host autophagic process for its proliferation.


Assuntos
Mycobacterium tuberculosis , Autofagossomos , Autofagia , Cálcio , Interações Hospedeiro-Patógeno , Humanos , Macrófagos , Serina-Treonina Quinases TOR
19.
Front Immunol ; 10: 1985, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497020

RESUMO

A large proportion of the world is inflicted with health concerns arising from infectious diseases. Moreover, there is a widespread emergence of antibiotic resistance among major infectious agents, partially stemming from their continuous dialog with the host, and their enormous capacity to remodel the latter toward a secure niche. Among the several infection-driven events, moderation of WNT signaling pathway has been identified to be strategically tuned during infections to govern host-pathogen interactions. Primarily known for its role in arbitrating early embryonic developmental events; aberrant activation of the WNT pathway has also been associated with immunological consequences during diverse patho-physiological conditions. Here, we review the different mechanisms by which components of WNT signaling pathways are exploited by discrete bacterial agents for their pathogenesis. Furthermore, recent advances on the cross-talk of WNT with other signaling pathways, the varied modes of WNT-mediated alteration of gene expression, and WNT-dependent post-transcriptional and post-translational regulation of the immune landscape during distinct bacterial infections would be highlighted.


Assuntos
Infecções Bacterianas/imunologia , Via de Sinalização Wnt/imunologia , Animais , Humanos , Imunidade Celular
20.
IUBMB Life ; 71(11): 1661-1671, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283086

RESUMO

Infectious diseases account for a large proportion of global health emergencies and are rising more so owing to the paucity of effective vaccination and chemotherapeutic strategies. The severity is compounded by the development of antibiotic resistance among major pathogenic strains, capable of residing in the hostile host microenvironment by hijacking its signaling mechanisms and molecular circuitry. Among such processes, studies on epidermal growth factor receptor (EGFR) have revealed specific contributions of this classical oncogenic signaling axis during distinct infection conditions. Here, we review the current status of EGFR family members in the context of host-pathogen interactions and speculate the possible dimensions of exploration and manipulation of the EGFR pathway for host-directed therapeutic purposes.


Assuntos
Anti-Infecciosos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Interações Hospedeiro-Patógeno/imunologia , Infecções/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais , Receptores ErbB/metabolismo , Humanos , Infecções/tratamento farmacológico , Infecções/etiologia , Infecções/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...